Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract We present a 3D shape analysis of both dark matter (DM) and stellar matter (SM) in simulated dwarf galaxies to determine whether stellar shape traces DM shape. Using 80 central and satellite dwarf galaxies from three simulation suites (“Marvelous Massive Dwarfs,” “Marvelous Dwarfs,” and the “DC Justice League”) spanning stellar masses of 106–1010M⊙, we measure 3D shapes through the moment of inertia tensor at twice the effective radius to derive axis ratios (C/AandB/A) and triaxiality. We find that stellar shape does follow DM halo shape for our dwarf galaxies. However, the presence of a stellar disk in more massive dwarfs (M* ≳ 107.5M⊙) pulls the distribution of stellarC/Aratios to lower values, while in lower-mass galaxies the gravitational potential remains predominantly shaped by DM. Similarly, stellar triaxiality generally tracks DM triaxiality, with this relationship being particularly strong for nondisky galaxies and weaker in disky systems. These correlations are reinforced by strong alignment between the SM and DM axes, particularly in disk galaxies. Further, we find no detectable difference in either SM or DM shapes when comparing two different supernova feedback implementations, demonstrating that shape measurements are robust to different implementations of baryonic feedback in dwarf galaxies. We also observe that a dwarf galaxy’s shape is largely unperturbed by recent mergers. This comprehensive study demonstrates that stellar shape measurements can serve as a reliable tool for inferring DM shapes in dwarf galaxies.more » « lessFree, publicly-accessible full text available June 12, 2026
- 
            Abstract Due to their inability to self-regulate, ultrafaint dwarfs are sensitive to prescriptions in subgrid physics models that converge and regulate at higher masses. We use high-resolution cosmological simulations to compare the effect of bursty star formation histories (SFHs) on dwarf galaxy structure for two different subgrid supernova (SN) feedback models, superbubble and blastwave, in dwarf galaxies with stellar masses from 5000 <M*/M⊙< 109. We find that in the “MARVEL-ous Dwarfs” suite both feedback models produce cored galaxies and reproduce observed scaling relations for luminosity, mass, and size. Our sample accurately predicts the average stellar metallicity at higher masses, however low-mass dwarfs are metal poor relative to observed galaxies in the Local Group. We show that continuous bursty star formation and the resulting stellar feedback are able to create dark matter (DM) cores in the higher dwarf galaxy mass regime, while the majority of ultrafaint and classical dwarfs retain cuspy central DM density profiles. We find that the effective core formation peaks atM*/Mhalo≃ 5 × 10−3for both feedback models. Both subgrid SN models yield bursty SFHs at higher masses; however, galaxies simulated with superbubble feedback reach maximum mean burstiness values at lower stellar mass fractions relative to blastwave feedback. As a result, core formation may be better predicted by stellar mass fraction than the burstiness of SFHs.more » « less
- 
            Abstract The interaction between supermassive black hole (SMBH) feedback and the circumgalactic medium (CGM) continues to be an open question in galaxy evolution. In our study, we use smoothed particle hydrodynamics simulations to explore the impact of SMBH feedback on galactic metal retention and the motion of metals and gas into and through the CGM of L*galaxies. We examine 140 galaxies from the 25 Mpc cosmological volume Romulus25, with stellar masses between log(M*/M⊙) = 9.5–11.5. We measure the fraction of metals remaining in the interstellar medium (ISM) and CGM of each galaxy and calculate the expected mass of each SMBH based on theMBH–σrelation (Kormendy & Ho 2013). The deviation of each SMBH from its expected mass, ΔMBH, is compared to the potential of its host viaσ. We find that SMBHs with accreted mass aboveMBH–σare more effective at removing metals from the ISM than undermassive SMBHs in star-forming galaxies. Overall, overmassive SMBHs suppress the total star formation of their host galaxies and more effectively move metals from the ISM into the CGM. However, we see little to no evacuation of gas from the CGM out of their halos, in contrast with other simulations. Finally, we predict that Civcolumn densities in the CGM of L*galaxies are unlikely to depend on host galaxy SMBH mass. Our results show that the scatter in the low-mass end of the MBH–σrelation may indicate how effective an SMBH is in the local redistribution of mass in its host galaxy.more » « less
- 
            Abstract Testing the standard cosmological model (ΛCDM) at small scales is challenging. Galaxies that inhabit low-mass dark matter halos provide an ideal test bed for dark matter models by linking observational properties of galaxies at small scales (low mass, low velocity) to low-mass dark matter halos. However, the observed kinematics of these galaxies do not align with the kinematics of the dark matter halos predicted to host them, obscuring our understanding of the low-mass end of the galaxy–halo connection. We use deep Hiobservations of low-mass galaxies at high spectral resolution in combination with cosmological simulations of dwarf galaxies to better understand the connection between dwarf galaxy kinematics and low-mass halos. Specifically, we use Hiline widths to directly compare to the maximum velocities in a dark matter halo and find that each deeper measurement approaches the expected one-to-one relationship between the observed kinematics and the predicted kinematics in ΛCDM. We also measure baryonic masses and place these on the baryonic Tully–Fisher relation (BTFR). Again, our deepest measurements approach the theoretical predictions for the low-mass end of this relation, a significant improvement on similar measurements based on line widths measured at 50% and 20% of the peak. Our data also hint at the rollover in the BTFR predicted by hydrodynamical simulations of ΛCDM for low-mass galaxies.more » « less
- 
            Abstract We examine the quenching characteristics of 328 isolated dwarf galaxies within theRomulus25cosmological hydrodynamic simulation. Using mock-observation methods, we identify isolated dwarf galaxies with quenched star formation and make direct comparisons to the quenched fraction in the NASA Sloan Atlas (NSA). Similar to other cosmological simulations, we find a population of quenched, isolated dwarf galaxies belowMstar< 109M⊙not detected within the NSA. We find that the presence of massive black holes (MBHs) inRomulus25is largely responsible for the quenched, isolated dwarfs, while isolated dwarfs without an MBH are consistent with quiescent fractions observed in the field. Quenching occurs betweenz= 0.5–1, during which the available supply of star-forming gas is heated or evacuated by MBH feedback. Mergers or interactions seem to play little to no role in triggering the MBH feedback. At low stellar masses,Mstar≲ 109.3M⊙, quenching proceeds across several Gyr as the MBH slowly heats up gas in the central regions. At higher stellar masses,Mstar≳ 109.3M⊙, quenching occurs rapidly within 1 Gyr, with the MBH evacuating gas from the central few kpc of the galaxy and driving it to the outskirts of the halo. Our results indicate the possibility of substantial star formation suppression via MBH feedback within dwarf galaxies in the field. On the other hand, the apparent overquenching of dwarf galaxies due to MBH suggests that higher-resolution and/or better modeling is required for MBHs in dwarfs, and quenched fractions offer the opportunity to constrain current models.more » « less
- 
            Abstract We are entering an era in which we will be able to detect and characterize hundreds of dwarf galaxies within the Local Volume. It is already known that a strong dichotomy exists in the gas content and star formation properties of field dwarf galaxies versus satellite dwarfs of larger galaxies. In this work, we study the more subtle differences that may be detectable in galaxies as a function of distance from a massive galaxy, such as the Milky Way. We compare smoothed particle hydrodynamic simulations of dwarf galaxies formed in a Local Volume-like environment (several megaparsecs away from a massive galaxy) to those formed nearer to Milky Way–mass halos. We find that the impact of environment on dwarf galaxies extends even beyond the immediate region surrounding Milky Way–mass halos. Even before being accreted as satellites, dwarf galaxies near a Milky Way–mass halo tend to have higher stellar masses for their halo mass than more isolated galaxies. Dwarf galaxies in high-density environments also tend to grow faster and form their stars earlier. We show observational predictions that demonstrate how these trends manifest in lower quenching rates, higher Hifractions, and bluer colors for more isolated dwarf galaxies.more » « less
- 
            Abstract We study satellite counts and quenched fractions for satellites of Milky Way analogs inRomulus25, a large-volume cosmological hydrodynamic simulation. Depending on the definition of a Milky Way analog, we have between 66 and 97 Milky Way analogs inRomulus25, a 25 Mpc per-side uniform volume simulation. We use these analogs to quantify the effect of environment and host properties on satellite populations. We find that the number of satellites hosted by a Milky Way analog increases predominantly with host stellar mass, while environment, as measured by the distance to a Milky Way–mass or larger halo, may have a notable impact in high isolation. Similarly, we find that the satellite quenched fraction for our analogs also increases with host stellar mass, and potentially in higher-density environments. These results are robust for analogs within 3 Mpc of another Milky Way–mass or larger halo, the environmental parameter space where the bulk of our sample resides. We place these results in the context of observations through comparisons to the Exploration of Local VolumE Satellites and Satellites Around Galactic Analogs surveys. Our results are robust to changes in Milky Way analog selection criteria, including those that mimic observations. Finally, as our samples naturally include Milky Way–Andromeda pairs, we examine quenched fractions in pairs versus isolated systems. We find potential evidence, though not conclusive, that pairs, defined as being within 1 Mpc of another Milky Way–mass or larger halo, may have higher satellite quenched fractions.more » « less
- 
            Abstract We explore the characteristics of actively accreting massive black holes (MBHs) within dwarf galaxies in the Romulus25cosmological hydrodynamic simulation. We examine the MBH occupation fraction, X-ray active fractions, and active galactic nucleus (AGN) scaling relations within dwarf galaxies of stellar mass 108M⊙<Mstar< 1010M⊙out to redshiftz= 2. In the local universe, the MBH occupation fraction is consistent with observed constraints, dropping below unity atMstar< 3 × 1010M⊙,M200< 3 × 1011M⊙. Local dwarf AGN in Romulus25follow observed scaling relations between AGN X-ray luminosity, stellar mass, and star formation rate, though they exhibit slightly higher active fractions and number densities than comparable X-ray observations. Sincez= 2, the MBH occupation fraction has decreased, the population of dwarf AGN has become overall less luminous, and as a result the overall number density of dwarf AGN has diminished. We predict the existence of a large population of MBHs in the local universe with low X-ray luminosities and high contamination from X-ray binaries and the hot interstellar medium that are undetectable by current X-ray surveys. These hidden MBHs make up 76% of all MBHs in local dwarf galaxies and include many MBHs that are undermassive relative to their host galaxy’s stellar mass. Their detection relies on not only greater instrument sensitivity but also better modeling of X-ray contaminants or multiwavelength surveys. Our results indicate that dwarf AGN were substantially more active in the past, despite having low luminosity today, and that future deep X-ray surveys may uncover many hidden MBHs in dwarf galaxies out to at leastz= 2.more » « less
- 
            Abstract We predict the stellar mass–halo mass (SMHM) relationship for dwarf galaxies, using simulated galaxies with peak halo masses of M peak = 10 11 M ⊙ down into the ultra-faint dwarf range to M peak = 10 7 M ⊙ . Our simulated dwarfs have stellar masses of M star = 790 M ⊙ to 8.2 × 10 8 M ⊙ , with corresponding V -band magnitudes from −2 to −18.5. For M peak > 10 10 M ⊙ , the simulated SMHM relationship agrees with literature determinations, including exhibiting a small scatter of 0.3 dex. However, the scatter in the SMHM relation increases for lower-mass halos. We first present results for well-resolved halos that contain a simulated stellar population, but recognize that whether a halo hosts a galaxy is inherently mass resolution dependent. We thus adopt a probabilistic model to populate “dark” halos below our resolution limit to predict an “intrinsic” slope and scatter for the SMHM relation. We fit linearly growing log-normal scatter in stellar mass, which grows to more than 1 dex at M peak = 10 8 M ⊙ . At the faintest end of the SMHM relation probed by our simulations, a galaxy cannot be assigned a unique halo mass based solely on its luminosity. Instead, we provide a formula to stochastically populate low-mass halos following our results. Finally, we show that our growing log-normal scatter steepens the faint-end slope of the predicted stellar mass function.more » « less
- 
            Abstract We present NIRCam and NIRISS modules for DOLPHOT, a widely used crowded-field stellar photometry package. We describe details of the modules including pixel masking, astrometric alignment, star finding, photometry, catalog creation, and artificial star tests. We tested these modules using NIRCam and NIRISS images of M92 (a Milky Way globular cluster), Draco II (an ultrafaint dwarf galaxy), and Wolf–Lundmark–Mellote (a star-forming dwarf galaxy). DOLPHOT’s photometry is highly precise, and the color–magnitude diagrams are deeper and have better definition than anticipated during original program design in 2017. The primary systematic uncertainties in DOLPHOT’s photometry arise from mismatches in the model and observed point-spread functions (PSFs) and aperture corrections, each contributing ≲0.01 mag to the photometric error budget. Version 1.2 of WebbPSF models, which include charge diffusion and interpixel capacitance effects, significantly reduced PSF-related uncertainties. We also observed minor (≲0.05 mag) chip-to-chip variations in NIRCam’s zero-points, which will be addressed by the JWST flux calibration program. Globular cluster observations are crucial for photometric calibration. Temporal variations in the photometry are generally ≲0.01 mag, although rare large misalignment events can introduce errors up to 0.08 mag. We provide recommended DOLPHOT parameters, guidelines for photometric reduction, and advice for improved observing strategies. Our Early Release Science DOLPHOT data products are available on MAST, complemented by comprehensive online documentation and tutorials for using DOLPHOT with JWST imaging data.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
